
NgO- 24 990

THERMODYNAMIC AND FLUID MECHANIC ANALYSIS OF

RAPID PRESSURIZATION IN A DEAD-END TUBE

Final Report

NASA/ASEE Summer Faculty Fellowship Program-1989

Johnson Space Center

Prepared By:

Academic Rank:

University & Department

Ian H. Leslie, Ph.D.

Assistant Professor

New Mexico State University

Department of Mechanical Engineering

Las Cruces, New Mexico 88003

NASA/:ISC/White Sands

Directorate:

Division:

JSC Colleague:

Date Submitted:

Contract Number:

White Sands Test Facility

Laboratory Operations

Frank Benz

October 30, 1989

NGT 44-001-800

17-1



ABSTARACT

Three models have been applied to very rapid compression of oxygen in a dead-ended tube.

Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These

temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used

material for lining hoses employed in oxygen service. These findings are in accord with experiments

that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless

steel braiding and catastrophic failure.

The system analyzed was representative of a capped off high-pressure oxygen line, which

could be part of a larger system. Pressurization of the larger system would had to compression in

the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum

containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast

acting valve to a stainlees steel tube 2 cm inside diameter. Opening times are on the order of 15

ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The

total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is

95 cm.

The models describe the fluid mechanics and thermodynamics of the flow, and do not include

any combustion phenomena. A purely thermodynamic model assumes filling to be complete up-

stream of the orifice before any gas passes through the orifice. This simplification is reasonable

based on experiment and computer modeling. Results show that peak temperatures as high as

4800 K can result from recompression of the gas after expanding through the orifice.

An approximate transient model without an orifice was developed assuming an isentropic

compression process. An analytical solution was obtained. Results indicated that t111times can

be considerably shorter than valve opening times. Thus, even though manually opening a valve is

slow compared to a fast acting valve, fill times can still be short. For a 100 cm long tube with a

valve opening time of 100 ms, the fill time is about 30 ms.

The third model was a finite difference, I-D transient compressible flow model. The code

was obtained from Sandia Livermore and applied to the system. Results from the code show the

recompression effect but predict much lower peak temperatures than the thermodynamic model.

The difference is due mostly to the complete lack of mixing in the thermodynamic model. Pressure

oscillations upstream of the orifice are predicted by this model as observed experimentally; however,

damping is greater in the computer model.
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INTRODUCTION

Considerable effort has been made at the White Sands Test Facility (WSTF) to characterize

and understand the phenomena associated with the rapid pressurization of flex hoses containing

pure oxygen. Pressures in excess of 6000psig, with pressurization rates as high as 600,O00psi/s

have been utilized. The primary concern involves the possibility of combustion. This can result

from the high temperatures generated from the compression of the low pressure oxygen originally in

the system, when exposed to a high pressure source. Valve opening times must be short (_ 0.1 s),

but test have shown that opening times of this duration are within the ability of a person to achieve

manually.

At present the mechanisms that lead to hose failure are believed to be pyrolysis of a portion

of the teflon lining, followed by ignition of these pyrolysis products, followed in some cases by the

ignition of the stainless steel braiding. Even in those cases which do not result in catastrophic

failure, the teflon monomer and partially reacted species such as carbonyl fluoride (COF2) have
been observed. The later compound is highly toxic and could pose a serious health risk if the flex

hose were part of a life support system.

To date, most of the effort at WSTF has been directed toward whether or not hoses met

certain criteria regarding acceptable failure rates. However, in addition to these efforts a program

[1] aimed at a more basic understanding of the phenomena of compression initiated combustion

has been underway for about two years. These efforts have been primarily experimental in nature,
and have provided the results mentioned above regarding the sequence of events that can lead to

catastrophic failure. Current experimental efforts are directed to in-sifu spectroscopic methods

for measuring pressure and temperature in real time. These data will not only be valuable in
themselves, but will provide input to, and verification of, flow models developed. The bulk of

this report is concerned with various models, of varying degrees of complexity, for describing the

compression process.

At the start of this summer program, modeling of the compression process itself had been

based on a very simple picture of the system. Estimation of the maximum temperature near the

dead end (assumed worst case) of a hose or tube was determined from the isentropic ideal gas

relation between pressure and temperature. This relation is shown in Eq. 1.

\PI/ (1)

Here _ is the ratio of specific heats, assumed to be constant with respect to temperature.

The model assumes piston like compression of the low pressure gas by the high pressure gas.

For a gas initially at ambient conditions and then pressurized to 6000psig a final temperature

of 1370°C is theoretically possible. The limitations of this model are readily admitted. The

assumed isentropy precludes friction, heat transfer, and mixing. A more realistic model could

have great utility in providing predictions for configurations that cannot be conveniently obtained

via experimentation, and in addition as a starting point for a model that includes combustion

phenomena.

In the sections that follow several models are presented based on various assumptions. The

order of presentation is essentially from the simplest to the most complex. A final section will give

recommendations for further model development. It should be kept in mind that a flow model, no

matter how sophisticated, will be incomplete without the chemistry of pyrolysis and combustion

included. However, the phenomena involved are quite complicated in detail, and an initial effort

that treats the flow as decoupled from the combustion is considered worthwhile and prudent.
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REAL GAS EFFECTS

The simplest improvement on the isentropic ideal gas model is to include real gas behavior.

To assess the importance of real gas effects reference is made to a generalized compressibility chart.

The critical temperature and pressure of oxygen are 158.4K and 5.08MPa respectively. Based

on the ideal gas relation, compression from ambient to 6000psig (,,, 41 MPa) will result in a

gas temperature of 1370°C. The reduced temperature and pressure are 10.4 and 8.03 respectively.

The compressibility factor Z is 1.08. This value suggests that that real gas effects should not be

significant. However, the temperature effect on specific heats may still be important.

To determine the actual relation between temperature and pressure during isentropic com-

pression a computer program was written. The real-gas model used was van der Waals' with

constants 'a' and 'b' calculated using the critical point method. The expression to determine T
versus P is given in Eq. 2.

The results of the integration are Shown in Fig. 1. Also shown in this figure is the curve based on

Eq. 1. and a curve allowing for variation in specific heat with temperature, but assuming ideal gas

behavior. This last relation was calculated from the expression

P = Poezp -_ (3)

where Po and To are initial values, such as ambient conditions, and cp(T) is the constant pressure

specific heat. The functional form of cp(T) was taken from reference [2].

Inspection of Fig. 1 reveals two important features. The first is that compressibility effects are

not significant as anticipated. The second feature is that the temperature dependence of cp(T) is

fairly important. For example, if ambient 02 is compressed isentropically to 5000psig, (34.5 MPa)
applying Eq. 1 predicts a temperature of 1295°C. If variable specific heat is accounted for this

temperature drops to 1066°C. If both real gas behavior and variable specific heats are considered

the predicted temperature is 1092°C. Each of the curves forms a straight or nearly straight line on

a log-log plot. Thus, the two variable-property curves can be fit to functions of the form of Eq. 1.

A least-squares method was used to find the appropriate exponent n in Eq. 4.

= (4)

The three values for n and the correlation coefficient r2 are listed below.

ideal gas with constant specific heats (7 = 1.395)
n = 0.2829 r2 = 1.0000

ideal gas with variable specific heats
n = 0.2599 r2 = 0.9987

real gas (ran der Waals) with variable specific heats
n = 0.2632 r 2 = 0.9989

The values on n for the last two cases strickly apply to To = 300K and 1'o = 100kPa; however,
small deviations from these values should cause little error.
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Figure 1.- Isentropic temperature-pressure relations.

SIMPLE THERMODYNAMIC MODELS

Most of the experiments conducted at WSTF involving rapid pressurization of flex hoses or

hard lines involve an orifice. The purpose of the orifice is to decrease the pressurization rate from

those attainable by the fast acting valve. Valve opening times between 13 and 18 ms are typical;

pressurization times would be of the same order. The orifice was sized so that pressurization times
were on the order of 100 ms.

As a first approximation the orifice was accounted for in the following manner. The valve is

assumed to open instantly, and high pressure plenum gas pressurizes the gas in the volume upstream

of the orifice before any significant flow occurs through the orifice. Next, gas flows through the

orifice with the pressure dropping to the local downstream pressure. Eventually the pressure is

everywhere uniform and equal to the plenum pressure (assumed constant due to large volume).

Additional assumptions include: ideal gas behavior, constant specific heats, no heat transfer, and

no frictional losses. Pressure is assumed to be spatially uniform on each side of the orifice.

Even with all these assumptions and the simple nature of the model, several cases need to be

considered. Two broad classes result from assuming piston like compression of the gas downstream

of the orifice on the one hand, and complete mixing on the other. In both cases the gas originally

upstream of the orifice is assumed to be compressed in a piston like manner. Two subcases result

depending on whether or not the initially compressed gas is of sufficient quantity to compress the

gas downstream of the orifice without any driver gas (gas originally in the plenum) passing through

the orifice. The results are presented below for these cases.
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Nomenclature:

A subscript refers to gas originally between valve and orifice

B subscript refers to gas originally downstream of orifice

nm subscript refers to no mixing

cm subscript designates complete mixing

i initial conditions

f final conditions

P! final pressure equal to plenum pressure

Pi initial pressure (same for gases A and B)

pressure ratio Py / Pi __ 1

7 ratio of specific heats

tga, volume between valve and orifice

0B, volume downstream of orifice

T, isentropic temperature based on Eq. 1

The formulae for the various cases are presented based on whether or not driver gas passes

through the orifice. With the various assumptions borne in mind, the limiting case for no flow
through the orifice is determined from Eq. 5.

This result applies to both mixing and nonmixing of gases A and B.

No Driver Gas Through Orifice And No Mixing

nm Ti

- )
T, ).,,1= _-I

The volume of Gas B aftercompression can be found from Eq. 8.

tgB___L= _-I/_
19B,

Complete mixing downstream of orifice

Tom 7_

_=7_ :_ +N-1

(5)

Gas B (6)

Gas A (7)

(8)

(9)
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SomeDriverGasThroughOrificeAndNoMixing

Beforeany Gas A passes through the orifice it is compressed to P/. This state is referred to

as state 1. TA_ =-- _, (10)

Due to the nature of the derivation a second intermediate state (state 2) is determined. This state

occurs when all of Gas A has just passed through the orifice. Note that the temperatures are

normalized to T, rather than 2_.

[ o.,_..-,( T..II _1+--_ _ 7- :1+
oB, 7", ]J

0A,/0B,

T.
TA= _B i

(li)

TB. _.'-- 0., ( T,._--=__'r + 7-- (i2)

The final state (state 3) is given by:

_y._

P2 = _/Ts,'_ "-' (13)

TAs _ 1 (14)

w-

T,._ (i5)
_7.]= i

The driver gas temperature is assumed to remain constant at _, except for that portion that passes

through the orifice. The temperature of this portion is given by:

TDs 7

I+ .,,,__.__.

(16)

In order to determine TAs and TDs (also Ts2 and P2) the values of OAi/dS,, _, and 3' must be

known. With these values Eq. !1 is solved iteratively for TAJT,)n m and substituted into Eqs. 14
and 16.

Complete mixing

T3) ._ R (17)
_'/ _(_- 1)- (_-_xA"_(@_=_ 1) +1crn \_B, / -

Results for no driver gas through the orifice and no mixing were determined for the values
are listed below.

= 300 K R = 300 (~ 4400psig) 7 = 1.395 (O_ value)

The final temperature of Gas B is 1508 K as is the temperature of Gas A when first compressed

upstream of the orifice. However, the final temperature of Gas A that passes through the orifice is

2076 K showing the recompression effect.
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TRANSIENT ISENTROPIC MODEL

An approximate model was developed for the filling of a tube or hose with only a valve in the

system, no orifice was included. The model is applicable to moderate rates of filling such that
is negiigable. This condition will be satisfied when t/,_ ta. Here t! is the characteristic time to fill

the hooe, and t_ is the wave relaxation time. The wave relaxation time is given by Faeth [3] as L/a,

where L is the length of the tube and a is the velocity of sound. For a 1 m tube and a -- 350 re�s,

ta - 2.8 ms. From a practical standpoint the filling time should be considerably greater than twice
this value. Thus t] should be at least 60 ms. For the fast acting valve this condition is not met.

However, manual valve opening times are at least this long.

The model was further simplified by assuming the following:

1. isentropic compression downstream of valve

2. no axial mixing or diffusion

3. no heat transfer to tube wall

4. no chemical reactions

5. ideal gas model with constant specific heats

6. temperature of gas passing through valve is taken as T/_ (plenum temperature)

To obtain the results desired the conservation equations for energy and mass must be solved

simultaneously. The momentum equation need not be solved because of the assumption of no spatial
variation in pressure. In addition to the two conservation equations, the equation of state and the

isentropic relation between temperature and pressure are employed. The appropriate equations are
provided in Eqs. 18 through 21.

pT a pTV
Energy c_----_=-cp 8z (18)

Mass 0 p 0 pV
Y-i = O_ (19)

Equation of State P= p R T (20)

DT 7-____1 _ 1 D P
Process "D-t'-- 7 T_P(r) , f, _-_ (21)

Equation 21, labeled as process, is the isentropic relation between pressure and temperature. The

pressure designated P(r) is the pressure at t = r, which is the time when the fluid element passed
through the orifice. It is Eq. 21 which is used to determine temperature from pressure.

The solution is comprised of two time domains. The first is characterized by choked flow at

the orifice. The second domain involves unchoked flow. The transition from one regime to the other

may or may not occur while the valve is still opening. The most rapid pressure rise occurs when

choked flow is present and the valve is fully open. This is so since the rate of pressure increase is

directly proportional to the flow area of the valve. Formulae for mass flux and pressure rise rate

were taken directly from Faeth [3]. Here the solution for P(t) is given for a valve area that increases
linearly with time.

A_(t) = Am (22)

Here Am is the maximum area of the valve and to is the time to open. Note that Am is alway less

than or equal to the area of the tube. The initial condition is P = Pi and T = TD at t = 0. Thus,
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for choked flow and t < to

P Pi "r B a o Am t 2

where ao is the sound speed at TD, and B is a function of 7 with a value near unity.

(23)

The condition for choking is

P ( 2_L_] _ (24)

SubstitutionofEq. 24 intoEq. 23 permits the unchoking time tucto be calculated,providetu_ _<to,

the most likelycase.

fu_=
[\7 + 1,,/ Pz, 7BaoAm t°

(2s)

The limiting case where tuc = to occurs when

to = t*o _ - 7Ba o Am
(26)

Thus the unchoking time for tu, < to becomes

t.o= (27)

For the purpose of an example Mr is chosen at ambient conditions. In addition, let Am = Arab,

and the length of the tube be lm. For a pressure ratio _ = 10, t 0 = 0.00308. For _ = 100,

t* = 0.0037,. Inspection of Eq. 26 shows that as _ ---, co, t o --* 0.0038s. These times are so short

that it will almost alway be the case that unchoking will occur before the valve is fully open. For

rue < t < to

P 7-1 ½ v_IC

where the constant C is given by

0

(28)

For t > to > tu, the appropriate equation is

-v

P Po -_" ½ 7_1C= 1- 1- "_o ._ (t-G)
(29)

where Po/P0 is determined from Eq. 28 when t = to. Pressure versus time for the case described

above with _ = 100 and to = 100 ms is plotted in Fig. 2. The time for unchoking is 19.2 ms. It is

interesting to note that the time to fill the tube is 30 ms, considerably less than the 100 ms valve

opening time.

17-9



gl
t0

¢1,

]
k

o
_5

1.0

0.8

0.6

0.4

0.2

Valve opening time is 100ms.

0.0
0 10 20 30

Time in milliseconds

Figure 2.- Pressure rise from isentropic model

COMPUTER RESULTS USING TOPAZ

In the words of the author of the computer code "TOPAZ is a user friendly computer code
for modeling the one-dimensional-transient physics of multi species gas transfer in arbitrary ar-
rangements of pipes, valves, vessels, and flow branches". The author is W. S. Winters of the

Computational Mechanics Division, Sandia National Laboratories, Livermore, CA. Dr. Winters
was most helpful and cooperative in making the source code available to me. For documentation
on TOPAZ see [4,5,6,7].

Some experimental results for pressure were available at the start of this computational work.
The exact physical setup appropriate for the data was not known, but data both upstream of the
orifice and at the dead-end were available. Therefore, the general characteristics of the pressure
transients were known. These characteristics included a very rapid and oscillatory pressure rise
upstream of the orifice, and a much slower and well behaved pressure rise at the dead-end. The
oscillations are believed to be due pressure waves traversing the distance between the high pressure
plenum and the orifice. These oscillations were observed in the computed results as well.

The system modeled in TOPAZ was a 1 m s spherical high pressure plenum. Gas from the
plenum flowed through five identical valves in parallel. Each valve when fully open is one-fifth the
area of the main pipe. The first part of the main pipe was 95 cm long and 2 cm inside diameter.
This pipe fed into an orifice 1 cm long and 3 mm in diameter. The orifice was followed by another
2 cm diameter pipe 48 cm long. Heat transfer was accounted for via the 'constant wall temperature'
model.

Results are shown in Figs. 3 and 4. Figure 3 shows three pressure traces. Examination of
the dead-end trace shows that the fill time is _ 90ms. This fill time is somewhat less than the
experimental results indicating that the orifice should be a little smaller. The other two traces

are for locations just upstream of the orifice. The pressurization rates are much higher than at
the dead-end, and show that the approximation (no gas passing through orifice while upstream is
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pressurized) made in the thermodynamic analysis section was reasonable.

The control element (CE (control volume)) just upstream of the orifice experiences consid-
erable pressure overshoot (factor of 1.8). The exact amount of the overshoot depends on how the

system is modeled. Details such as the CE length both before and in the orifice can change the
maximum value. However, the frequency of the oscillations and the time to decay to the final

pressure are not significantly effected. This extreme overshoot only occurs in the CE just before
the orifice independent of other changes. Further study is required to determine if this overshoot

is real, or a manifistation of the numerical model.
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0 20 40 60 80
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100

Figure 3.- Pressure rise in tube with 3 mm orifice. Upper curves are just upstream of orifice, lower

curve is at very end of tube.

Temperature traces at and near the dead-end are shown in Fig. 4. If the order of the curves at

100 ms is examined, the highest temperature occurs at the dead-end with temperatures decreasing

as one moves upstream. At least two significant features need to mentioned. The first feature is that

the presence of the orifice results in a higher maximum temperatures. For a straight tube with no

orifice, a maximum temperature of _ 980 K was reached. With an orifice a maximum temperature
near 1400 K was reached. Thus, the recompression effect predicted earlier using thermodynamics

only is confirmed; however, the effect is much smaller. The second feature is that the region that

experience temperatures in excess of 750 K (autoignition temperature of PTFE) is much larger

than for a straight tube.

The placement of the orifice is important. If the orifice is located close to valve very little

gas is initially pressurized and very little high temperature gas is recompressed. This means that
pressurization rates can be controlled via an orifice with little unwanted recompression effects. On

the other hand, a system in the field may contain restrictions some distance from the high pressure

source and the dead-end and not be properly modeled unless the orifice is placed at the appropriate
distance from the source.
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EXPERIMENTAL RESULTS

The available experimental results apply to a system somewhat different in detail to the
system modeled by TOPAZ. The data are useful since they are Ureal" and because they show that
TOPAZ is able to model the main features. The pressure data is considered most reliable because

the response of the piezoelectric transducers is more than sumcient to capture any of the observed
transients. The temperature data was obtained with a thin film thermocouple mounted at the
dead-end. Only a very small portion of the tip was exposed and may have been within a thermal
boundary layer after a very short time. There is also some question as to what the transient

response characteristics are for the thin film thermocouple. A fairly sophisticated heat transfer
analysis would be required to determine the in situ behavior.

Pressure traces are shown in Figs. 5 and 6 which were taken prior to the Summer of 1989.
Mr. Dwight Janoff (now at 3SC) made these data available, additional results are available. None

of the traces was converted to pressure; however the reservoir pressure was 6000psig. The relation
between the vertical scale (mV) and pressure is fairly linear at early times. The apparent decrease

in pressure observed beyond 0.2 s is not real and is due to behavior of the piezoelectric transducer.

Figure 5 shows the pressure rise at the dead-end. Fill times are about 150 ms. Figure 6 shows the

pressure history just before the orifice. Note that the rise to peak pressure is very rapid (_ 20 ms).
The oscillations are considered real and not due to the transducer. The TOPAZ results also show

oscillations, but not as persistent as in the actual data. In both the experimental results and the

computer predictions, the upstream pressure transients continue until the downstream pressure has

reached its final value. The other significant difference between the data and the predictions is the
degree of overshoot. The data indicates a factor of 1.3, versus 1.8 from TOPAZ.
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CONCLUSIONS

The highly transientnature of the rapid compression processrequiresthat the compressible
form of the Navier-Stokes equation be solved.At present the 1-D form ofthese equations provides

usefulresults,although furtherassessment isrequired todetermine what the limitationsare.These

limitationscould includefrictionalmodeling, heat transfermodeling, and valve modeling. Results
based on the purely thermodynamic model are valuable to illustratethe effectsof recompression

and mixing versus non-mixing models, but are not quantitativelyaccurate. The approximate 1-D

isentropicmodel isrestrictedto slow fillingratesand no orifice,but allowsvery quick resultstobe
obtained. In addition,thisapproximate model being in an analyticalform allowsthe dependence

of filltime on variousparameters to be easilydetermined. One resultfrom thismodel isthat filling

times are only partially dependent on valve opening times. In general the fill time is much less
than the valve opening time if the opening is performed manually.

The computer resultsfrom the code TOPAZ reproduce the experimental resultsreasonably
well.Some ofthe differencesare due to the actual experimental system not being modeled exactly

in the code. The dominant featurethat shows up both experimentally and theoreticallyisdamped

pressure oscillationsupstream of the orifice.The code alsopredictsa recompression effectdue to

the presence of an orifice. The net results of this are higher peak temperatures and a larger region
above the autoignition temperature of teflon. Thus, if an actual oxygen system has an orifice (or
a partially opened valve) in the piping, higher peak temperatures can be obtained than would be
expected. In either case the peak temperatures are calculated to be less than temperatures based
on adiabatic compression, although only somewhat less with the recompression effect accounted
for.

TOPAZ results suggest that heat transfer is not a significant factor during the first 150 ms or so.
These times are thought to be sufficiently long to allow ignition to take place. The major increase
in temperature takes place at very early times. This is due to the dependence of temperature on
pressure . The adiabatic model of Eq. 1 shows that temperature rises most rapidly at the low
pressures. Thus, high temperatures can be reached in just a few 10's of millseconds.

RECOMMENDATIONS

Several questions remain to be answered regarding the heating phase of the rapid compression
(before significant pyrolysing or combustion). These questions are:

1. How do the various parameters of the problem effect final temperature?

2. Is the valve model used in TOPAZ 'good enough'?

3. What are the actual temperatures in the system?

4. Does the temperature drop very sharply right at the dead-end?

5. Is axial mixing significant?

To answer these questions the following recommendations are suggested:

1. continue calculations using TOPAZ to finish the parametric study of the problem,

2. apply existing 2-D codes to the problem to assess the accurateness of the I-D code,

3. build an experimental system that is as simple as possible so that code predictions can be
unambiguosly compared (all dimesions and parameters of the system must be known),

4. instrument the system for both pressure and temperature (either a 'hot-wire' method
or optical technique needs to be used for temperature),

5. perform tests with nitrogen compressed by oxygen to assess mixing effects.

All code predictionsrequireextensive amounts of CPU time. The VAX 8530 requiresup

to 65 hours to complete some runs. A 2-D code isexpected to run longer. Although memory

requirements are not great,the calculationallyintensivenature of the compressibleflow equations

suggests using a super computer. Since both the 1-D and 2-D codes were originallywritten fora
CRAY computer, itissuggested that thissuper computer be used.
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